RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. FOURTH SEMESTER EXAMINATION, MAY 2018 SECOND YEAR (BATCH 2016-19)

PHYSICS (General)

Date : 25/05/2018

Time : 11.00 am – 1.00 pm Paper : IV Full Marks : 50

[Use a separate Answer Book for each group]

Group - A

		(Answer <u>any four</u> questions)	[4×5]
1.	a) b)	Draw the circuit diagram of a full-wave rectifier using bridge connection. Explain its working very clearly. What is the Peak-Inverse Voltage (PIV) of the rectifier.	[1] [3+1]
2.	a)	Describe the characteristics of a transistor in the CE mode of operation with a suitable circuit.	[2+1]
	b)	Prove the relation : $\beta = \frac{\alpha}{1-\alpha}$ where α is the current gain in the CB mode and β in the CE mode of operation respectively.	[2]
3.	a)	What is zener diode? Explain its characteristics.	[1+2]
	b)	Breakdown voltage of a Zener diode is $4.7V$ and its resistance is 100Ω . It is connected to a $10V$ supply. Determine the current in the breakdown condition through the Zener.	[2]
4.	a) b)	For the logic expression $Y = A\overline{B} + \overline{A}B$, realize this operation using NAND gate only. Prove the following using De Morgan's theorem.	[3]
		1. $\overline{A} \overline{B} \overline{C} + \overline{A} BC + ABC + A \overline{B} \overline{C} = \overline{B} \overline{C} + BC$	
		2. $(A+BC)(B+\overline{C} A) = AB + A\overline{C} + BC$	[1+1]
5.	a)	Perform the following operations with binary number system using 2's complement method. (i) $45-25$ (ii) $25-45$ (iii) $-45-25$	[3]
	b)	Given the logical equation, $Y = AB + A\overline{C} + BC$. Design a circuit using gates to realize Y.	[2]
6.	Wh	hat is Full-Adder? Realize the Full-Adder circuit with the help of truth table.	[5]
Group - B			
(Answer any six questions) [6×5]			
7.	a)	Consider the nuclear reaction : $x + X = y + Y$. The symbols bear their usual meanings.	501
	b)	Calculate Q-value of the reaction. What is mean life of a radioactive atom. Derive an expression of it.	[2] [1+2]
8.	a)		1.5+1.5]
0.	b)	Plot a graph between packing fraction and mass number and discuss the graph.	[2]
9.	a) b)	How transient equilibrium and secular equilibrium occurs in successive disintegration. Write a name of radio isotope and its use.	[2+2] [1]
10.	a)	Write down time dependent Schrodinger equation. Prove that time evolution of the state $\psi(t)$	[1 , 2]
	b)	is determined by the Hamiltonian. Normalise the wave function as defined:	[1+2] [2]
	,	$\psi(x) = Ae^{-\alpha x}$ for $x > 0$ and	

= Ae $^{\alpha x}$ for A < 0

11. From relativistic momentum conservation show that $m = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}}$ where m is the mass of the

moving body and m_0 is its rest mass, c is the velocity of light and v is the relative velocity of two frame.

- 12. a) Show that in the space time interval $x^2 + y^2 + z^2 c^2t^2$ is invariant. [3]
 - b) A radioactive nucleus of half-life 1 μ s moves through the laboratory at $2 \cdot 7 \times 10^{10}$ cm/s. What will be its half life as measured by an observer in the laboratory? $c = 3 \times 10^{10}$ cm/s. [2]

[5]

- 13. a) What are the basic lattice parameters? Define a mono-clinic crystal in terms of the lattice parameters. [1+1]
 - b) Write down Bragg's law for crystal diffraction. For an X-ray diffraction of wavelength $0.842\,\text{Å}$ the glancing angle is $8^\circ35'$ for the first order. What will be the glancing angle for the third order? (Given $\sin(8^\circ35') = 0.15$)
- 14. An electron is trapped in an infinite square well of length $2 \times 10^{-10} \, \text{m}$. In the ground state, calculate the probability of finding the particle between x = 0 to $x = 0 \cdot 25 \times 10^{-10} \, \text{m}$. [5]
- 15. What is Compton effect? Obtain an expression for the Compton shift. [1+4]
- 16. State de Broglie hypothesis. Establish Bohr's quantization condition on the basis of de Broglie's concept of matter waves. From the expression of phase velocity u of de Broglie waves i.e. $u = c\sqrt{1 + \frac{m_0^2 c^2 \lambda^2}{h^2}}$. Show that the de Broglie waves show dispersion in vacuum. [1+2+2]

____×___